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BOUNDARY-LAYER RECEPTIVITY TO ACOUSTIC DISTURBANCES 

V. N. Zhigulev and A. V. Fedorov UDC 532.526.013.4 

It is known that, in the case of small external disturbances, boundary-layer transition 
from laminar to turbulent flow is caused by the growth of unstable Tollmien-Schlichting (TS) 
waves [i, 2]. The location of transition region and the nature of transition process essen- 
tially depend on boundary-layer receptivity to external disturbances, i.e., on the excitation 
of TS waves by background noise. Scattering of acoustic waves in spatial flow nonuniformi- 
ties due to surface roughness or nonuniform boundary conditions (nonuniform wall heating, 
local mass transfer through porous surface, etc.) is a typical mechanism of unstable wave 
generation. 

Excitation of TS waves by streamwise acoustic wave on a small isolated roughness on 
a flat plate was experimentally investigated in [3]. Asymptotic analysis of this problem 
was carried out in [4] for the case when the roughness was located in the neighborhood of 
the lower branch of the neutral curve. Generation of TS waves by sound on sinusoidal and 
distributed waviness of the flat-plate surface was considered in [5] at small freestream 
Mach numbers. 

Theoretical investigation of the excitation of TS waves by acoustic disturbance on local 
three-dimensional roughness in a compressibl e boundary layer is presented in this present 
paper. Analysis is carried out by reducing the problem to the solution of a system of eigen- 
functions of the linearized Navier-Stokes equations [6, 7]. The generation of unstable waves 
is the result of weak nonlinear interaction of sound with the flow nonuniformity. Computa- 
tions on the excitation of TS waves on individual roughness element in the flat-plate boun- 
dary layer agree well with experimental data [3]. 

If isolated roughnesses are small, or if they are far from the point of instability 
so that the final amplitudes of the generated TS waves are small, then it is possible that 
the distributed generation of unstable waves may become dominant. In this case the excita- 
tion is caused by acoustic scattering on weak nonuniformity due to nonparallel flow condi- 
tions in the boundary layer [8-10]. A comparison of the effectiveness of TS-wave generation 
by sound on isolated roughness and on distributed roughness is given in this paper. 

I. Consider two-dimensional compressible flow. A roughness element in the form of 
a small hump, which is a stationary disturbance source in the boundary layer, is located 
at a disturbance L from the leading edge of the flat plate. External acoustic wave with 
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specified amplitude and frequency is introduced at an angle ~0 to the flat plate and is scat- 
tered at the roughness exciting TS waves of the same frequency. It is required to determine 
the characteristics of the generated TS waves. 

Consider the coordinate system shown in Fig. i. Let the reference length scale along 
the x axis by L, along the y axis, 6 = (v~L/U~) I/2, and the reference time be 6/U~ (v~ and 
U~ are the kinematic viscosity and the velocity of the free stream). Analysis is limited 
to two-dimensional disturbances. The flow field is described by the vector-function 

a~ aO a,~ 0~, ~0 
~F ~x, y~ t) = u, ~ ~,, p, O, �9 �9 ' 8y '  Ox' Ox' Ox]' 

where  u and v a r e  t h e  x and y components  o f  v e l o c i t y  n o r m a l i z e d  w i t h  r e s p e c t  t o  U~; p i s  
the normalized pressure with reference to o~U~ 2 (O is the density); O is the normalized tem- 
perature with reference to the free stream temperature T~. 

The disturbance flow field is expressed in the form 

�9 (x, y, t) = Q(x, y) + hq(x, y) + Re [A(x, y)e-~0~t]. ( 1 . 1 )  

Here  Q(x,  y)  d e s c r i b e s  t h e  mean f l o w  in  t h e  b o u n d a r y  l a y e r  on a smooth s u r f a c e  and v a r i e s  
a l o n g  x by t h e  l e n g t h  s c a l e  L; A(x ,  y )  i s  t h e  a m p l i t u d e  o f  u n s t e a d y  d i s t u r b a n c e s ,  i n c l u d i n g  
the external acoustic wave; q(x, y) corresponds to stationary disturbance due to the hump, 
localized by the length scale EL; ~ = R -l = (v=/U~L) I/2 << i. 

The roughness shape is given by the equation 

y ~ ( s ) = h f ( s ) ,  s = s  - 1 ( x - x , ) '  / ( s ) = O ( l )  

(x, = i is the coordinate of the center of the hump). It is assumed that the roughness height 
h is much less than the thickness of the viscous sublayer. Then the disturbance due to the 
roughness is described by linearized Navier-Stokes equations [4, 11]. 

Substituting Eq. (i.i) in Navier-Stokes equations and retaining terms of the order of 
E, h for the unsteady disturbances and terms of the order h for steady disturbance, we get 

afL .aA~ OA ~A 0"--~ %, o"~y / + L1 ~ = H t A  + ~It2 ~ + sttaA + hH4 (q) A; ( 1 . 2 )  

(oq) Oq Oq 
0 Lo + L1 = Htq  + 8H,z ( 1 . 3 )  

Matrices L 0, LI, Hi, and H 2 are 9 x 9 and depend on the mean flow, frequency, and on x as 
a parameter. Their explicit form is given in [7]. In (1.3) matrix elements are computed 
for m = 0. The operator H 3 contains terms resulting from nonparallelness of the mean flow. 
The operator H 4 describes nonlinear interaction of the steady q and unsteady A disturbances. 

The boundary conditions for insulated, highly conductive surface are 

Tl(x,  y~, t) = Ta(x, y~,  t) = O, Ts ( x ,  yw, t) = T, ,a,  ( i . a )  

where  Twa i s  t h e  a d i a b a t i c  w a l l  t e m p e r a t u r e .  Expand ing  ( 1 . 4 )  in  a s e r i e s  in  t h e  n e i g h b o r h o o d  
o f  y = 0, we g e t  o f  o r d e r  0 ( h )  + O(z)  

A l ( x ,  O) = Aa(X, O) = As ( z ,  O) = O; ( 1 . 5 )  
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ql (x~ O) = --  U~/(s), q3 (x, 0) = q5 (x, 0) = 0 t U~ = Q2 (x, ~ .  ( i .  6) 

As y + ~, t h e  u n s t e a d y  d i s t u r b a n c e s  a r e  assumed to  be bounded and t h e  s t a t i o n a r y  d i s t u r b a n c e s  
a r e  assumed damped: 

IA(x, Y)l < co, y--+ co; ( 1 . 7 )  

Iq(x, y ) l - +  0, y ---,- co. ( 1 . 8 )  

The initial condition is specified at the section x 0 located sufficiently far upstream 
of the local roughness 

q from 
and (i. 
linear 

A(~, V) = A0(v) (1. o) 

[A0(y) i s  t h e  a c o u s t i c - w a v e  a m p l i t u d e ] .  

I t  i s  assumed t h a t  t h e  s t a t i o n a r y  d i s t u r b a n c e  q (x ,  y)  i s  l o c a l i z e d  n e a r  t h e  roughnes s  
and i s  damped ups t r eam and downstream.  Thus,  in  o r d e r  t o  d e s c r i b e  t h e  n o n s t a t i o n a r y  f i e l d  

Eqs. (1.3), (1.6), and (1.8), and solve the combined problem (1.2), (1.5), (1.7), 
9). Such a formulation corresponds to the first approximation for the weakly non- 
interaction of disturbances. 

2. The amplitude of nonstationary disturbance A is expressed in the biorthogonal sys- 
tem of eigenfunctions {A s, Be} of the locally homogeneous problem [7] which is obtained from 
(1.2) if the third and second terms on the right-hand side are neglected: 

x 

A (x~ y) = ~, '  c~ (x) A~ (x, y) exp % (x), % = i  ~ s- la dx 

" denotes summation to the discrete and is for the according spectrum integration con- 

tinuous spectrum). Here and subsequently, eigenvalues ~ are nondimensionalized with respect 
to the reference length 6. Spectral analysis and properties of biorthogonal systems are 
given in [7]. The following orthogonality conditions are fulfilled: 

oo 9 

<Hv:= t Bf~> = A~I~ , <H2A, " B> = S ~' H~JA~BIdy' (2.  l )  
0 i, j-~.l 

where B a is the conjugate of As; Aa8 is the Kronecker delta when at least one of the eigen- 
functions belongs to the discrete spectrum; Aa~ = 6(a - 8) is a delta function if a and 
belong to the continuous spectrum; the bar denotes complex conjugate. 

Consider bimodal condition describing the interaction of acoustic wave with wave number 
aA and TS wave with eigenvalue aTS: 

A = c A (x) AA (x~ y) e ~A(~) + CTS (X) ATS (x, y) e ~rs(x). ( 2 . 2 )  

Substituting (2.2) in (1.2) and using the orthogonality condition (2.1), 

dCTs 
d x  = CTsWTs'TS + s-lhe~sWh,TS,TS + r + 8-1hCAWh,A,Tse~A-~TS' 

(2 .3)  deA T ~TS--~A 
dx = c A W A ' A  + 8--1hcAWh'A'A + CTSFVTS'Ae + e-lhCTsWh,TS,Ae~TS-~A~ 

CTs (Xo) = 0, cA(xo) = CAo = (It2Ao, BA ). 

Here Wa~ = -<H28xAa, B~> - <HaA a, B~> are matrix elements that describe the internodal inter- 
action due to nonparallel effects of the mean flow [8, i0]; Wh,a, $ = -<H4(q)Aa, BS> are ma- 
trix elements that describe the internodal interaction as a result of local nonuniformity 
in flow. 

After a formal integration of the equations for cTS(x) from (2.3), we get 

[J ( I]( ) 
xo ~ . . . .  XO ] ~0 X 
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where E = WTS,TS + e-lhWh,TS,TS is the distortion of the eigenvalue of TS wave due to non- 
p a r a l l e l n e s s  o f  t h e  mean f l o w  and l o c a l  r o u g h n e s s .  

The roughness shape and stationary disturbance are expressed in the form of Fourier 

i n t e g r a l s :  

t ; ias8 1 (S) = --~ p (as) e da,~, 

q (x,. y) = "Y5 p (as) As (X, Y) e d~,~ s = 8 - 1  ( X  - -  X , ) .  

The Fourier component A v is the solution of the problem on the locally uniform flow in x: 

d L _ o aAs -~-y 7 + L1 ~ = II iAs + iasII2As' 

y=0, IAol 0, 
( 2 . 5 )  

Here the matrix elements L0, LI, H I, H~ are computed at ~ = 0. 

Since the operator H4 is linearly dependent on q, the following relation is valid: 

i S ~e-vs Wh,A,TS = ~E p (a,) Vs,a,Tse d=s, ( 2 . 6 )  

where Vv,A,TS(av, Av) is the matrix element that describes the nonlinear interaction between 
stationary disturbance with wave number ~v and the acoustic wave. Neglecting the first term 
in the integral expression (2.4) which is responsible for the excitation of TS waves due 
to nonparallelness of the mean flow, and substituting (2.6) in (2.4), we get 

CTS (X) = ~ p (~Zs) I (CZ~) dcz~ exp Edx ; ( 2 . 7 )  
~oo Lx 0 

--1 ~ ~- ~A--~TS+~v 
I ( a s ) = e  J CAVs.A.TSe exp - -  Edx dx~ ( 2 . 8 )  

X 0 X 0 

X 

r = ie - I  ~ avdx. 
X $  

L e t  t h e  c o o r d i n a t e  o f  t h e  c e n t e r  o f  t h e  hump x ,  c o i n c i d e  w i t h  t h e  p o i n t  o f  i n s t a b i l i t y  
Xpi f o r  TS waves  ( a n a l y s i s  f o r  r o u g h n e s s  d i s p l a c e d  f rom t h e  p o i n t  Xpi i s  g i v e n  b e l o w ) .  Then 
r e s o n a n c e  o f  e x c i t a t i o n  i s  r e a l i z e d  a t  t h e  p o i n t  x ,  f o r  a v = a v ,  = aTS - a A. The l a r g e  p a r a m -  
e t e r  E -1 as  t h e  i n d e x  o f  t h e  e x p o n e n t  i n  t h e  i n t e g r a l  e x p r e s s i o n  ( 2 . 8 )  makes  i t  p o s s i b l e  
t o  d e t e r m i n e  t h e  a s y m p t o t e  o f  t h e  i n t e g r a l  I ( a  v )  u s i n g  t h e  method o f  s t e e p e s t  d e s c e n t .  Down- 
stream of the hump for x x... >> el/=x... -- ,, ,, ~ ~ -> 0 

I ( a s , ) = e a ( x , ) g e x p  i 8 -~ (aa - -aTs )dx  - Edx ,: 
% % ( 2 . 9 )  

g = daTs V~.A.TS (av,~ X,) e iq' + 0 (sl12). 

Here the asterisk denotes quantities computed at x,, ~ is a real constant determined by the 
choice of the square root. 

In the event of a deviation from resonance Aa = ~v - av* the saddle point z,, determined 
from the equation aA - aTS + ~v = O, will be complex: 
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At5 

= ,  = **  T + o 
\ d x  1 ,  

Expanding the subintegral functions cA(x), Vv,A,TS(X) in a small neighborhood of the 
complex plane z, enclosing ~region of the saddle point, assuming that these are analytic 
functions. Integrate (2.8) along the contour passing through the saddle point along the 
line of steepest descent, and expand the result of integration in series in the neighborhood 
of the center of the hump x,. Then, as E + 0, x -- x, ~ el/2x,, 

i (%-%,)~] 
I(a~, x)= I(~.) exp/~ . / d ~ s / !  [ 

L k-~- - ] ,  J 

( 2 . 1 0 )  

Substituting (2.10) in (2.7) and integrating for all ~v, we get an asymptotic expres- 
sion for the amplitude of the generated TS wave 

CTS (x, y) = haA ( x , )  p (av,) Vv,A,TS(a~,, x,) ATS (x, y) e~'TS, ( 2 . 1 1 )  

a A (x,) --= exp e - l a A d x  , ----- (is-10~TS + E) dx 
X 0 .XCg 

[aA(x,) is the amplitude of sound wave at resonance]. If the hump is displaced from the 
point of instability, av* will be complex. In completing the integral in Eq. (2.7) it is 
necessary to continue the subintegral function into the complex region av enclosing the 
region of the saddle point ~v*, and to use the method of steepest descent. The first approxi- 
mation in e again reduces to Eq. (2.11). 

Thus, the excitation of TS waves is localized in the segment Ix - x,l ~ el/ax.., and takes 
place in a narrow range of wave numbers l~v - ~v,[ ~ el/2~v,. As the wave number ~v moves 
away from the resonant value, the amplitude of TS waves is exponentially decreased. 

3. It follows from (2.11) that the amplitude of maximum fluctuations along y of the 
streamwise component of mass flow in the excited TS wave 

x.) qTs(x) q m ( X ) = h p ( a ~ , ) [ a A ( x , ) l P A , T S ( a v ,  , ~ exp (ira FTS); (3.1) 

PA,r = I V,,A,TS (%,, ~,) BT--s>. ]qT  (x,), (3.2) 

where qTS is the modulus of the x component of the mass flow computed from the vector ATS at 
the point of maximum along y; PA,TS is the coupling coefficient of the acoustic wave and TS 
wave which characterizes the effectiveness of the excitation mechanism. The introduction 
of the factor <H2ATS , BTS >-I ensures invariance of (3.2) relative to the choice of normaliza- 
tion of eigenfunctions ATS, BTS. In the normalization of the acoustic mode AA is fixed, the 
coupling coefficient does not depend on the form of the hump and the strength of the acoustic 
wave. Its value is equal to the amplitude of TS wave excited by the acoustic wave of unit 
amplitude [a A (x,) = i] on a hump of height h = 1 and with resonant harmonic 0(~v~) = i. 

The coupling coefficients PA,TS were computed for boundary layer on a flat plate with the 
adiabatic index equal to 1.41, Prandtl number 0.72, and stagnation temperature 310~ The 

TABLE 1 

t02 ~v*'i02 IPA, TS'I0 ~ R ~TS "t0~ ~v * ' i 0 '  PA, TS 't0E R aTS' 
l M 

F~20.I0--6 F:6O.i0 ~6 

0,2 
0,4 
0,6 
0,8 

1020 
1010 
960 
900 

7,27 
7,02 
6,44 
5,73 

6,95 
6,47 
5,74 
4,96 

6,50 
4,90 
3,42 
2,14 

550 
540 
520 
490 

10,04 
9,64 
8,97 
8,06 

9,52 
8,76 
7,84 
6,88 

6,37 
4,90 
3,54 
2,33 
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free stream Mach number was varied in the range 0.2-0.8. Sutherland's formula was used for 
computing viscosity. Eigenfunctions and matrix elements were computed using Dunn-Lin ap- 
proximation [12]. Acoustic mode was specified by the conditions: angle of incidence ~ = 
20 ~ , amplitude of streamwise velocity fluctuations in the incident wave uA = 1 at x = x,. 
Computed results are given in Table i. Reynolds number R, eigenvalues of TS waves ~TS and 
resonant wave numbers ev* are also given there. It follows from Table i that at subsonic 
speeds the effectiveness of excitation weakly depends on the frequency parameter F = ~v~/U~ 2. 

A comparison with experimental results [3] has been carried out to verify theory. The 
experiment was conducted on a flat plate boundary layer with a free-stream velocity of U~ = 
23.4 M/sec. The hump was located at a distance L = 0.565 m from the leading edge, had a 
triangular shape with a streamwise dimension s = 12 mm (approximately a quarter of TS wave- 
length). Its height was varied in the range h* = 5-35 ~m. Plane, streamwise acous- 
tic wave was beamed at the boundary layer with a frequency of 138 Hz and propagating upstream, 

= 180 ~ . The test conditions for the experiment were: M = 0.066, R = 901, F = 25.4-10 -6 , 
~A = -1.62"10 -3 , ~TS = 7.93 "10-2. The amplification factor KA,TS equal to the ratio of the 
amplitude of the fluctuation streamwise velocity in TS wave measured at the point of maximum 
along y to the corresponding amplitude of acoustic wave at the same point, was computed. 
A comparison of theoretical computations (continuous line) and experiment results (points) 
is shown in Fig. 2. The scatter does not exceed 11% and lies within experimental measurement 
accuracy. 

It is worth noting that the equation for the amplitude of excited TS waves (2.10) depends 
only on local flow characteristics along x and is valid for attached boundary layers on bodies 
with characteristic length scale ~L. The given equation makes it possible to compute the 
excitation of TS wave by sound on nonuniformities caused by local heating of the wall or 
local suction through a porous surface. In this case, it is necessary to replace boundary 
conditions in (2.5) to compute resonant Fourier-harmonics of stationary disturbance. 

If the local nonuniformity on the surface of the body is vanishingly small, the dominant 
element in Eq. (2.4) is WA,TS which describes the generation of TS waves by sound on the dis- 
tributed nonuniformity due to nonparallel flow effects in the boundary layer. The given 
type of excitation is discussed in [8-10]. Computations were carried out for flat plate 
boundary layer at M = 0.6 to compare the effectiveness of the generation of TS wave on local 
nonuniformity and on nonparallelness of the mean flow. The external acoustic wave had the 
parameters: F = 20.10 -6 , ~ = 20 ~ . The computation of distributed generation was carried 
out using the algorithm described in [9]. The local excitation was computed for a nonuni- 
formity located at the point of loss of stability (R = 960) and having a form with resonant 
Fourier-harmonic P(~v*) = i. Computations showed that excitation on distributed roughness due 
to a slow growth of boundary layer along the flow is equivalent to the excitation on local 
roughness having characteristic dimension h* =i0-~. Thus, for boundary layer with 6 = 0.6 
mm, which corresponds to experimental condition [3], the equivalent roughness at the point 
of loss of stability h" = 0.6 Bm. As expended, the distributed generation of TS 
wave is significantly weaker than the generation on isolated flow nonuniformity. This is 
explained by the fact that the scale of flow nonuniformity on a smooth surface L appreciably 
exceeds the scale of intermodal exchange s - gL/I~ A - ~TSI. The subintegral function in Eq. 
(2.4) rapidly oscillates, and the integral has exponentially small values. 

The authors acknowledge useful discussions with A. M. Tumin. 
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DYNAMICS OF LAMINAR VORTEX RINGS IN A STRATIFIED LIQUID 

V. S. Belyaev, A. M. Savinkov, and Yu. D. Chashechkin UDC 532.527 

The study of isolated vortices and interacting vortical structures on different scales 
(the principal structural elements in developed turbulence) is a traditional problem of fluid 
dynamics. In recent years there has been substantial progress in explaining the nature of 
the stability of vortices resulting from the stabilizing effect of centrifugal forces which 
suppress transport in the radial direction [i]. It has been established experimentally that 
there is a laminar core inside turbulent vortex rings [2]. A survey of theoretical and ex- 
perimental studies of the motion of vortices in a uniform fluid was made in [3]. The dynamics 
of an isolated vortex is determined to a significant extent by the involvement of the surround- 
ing fluid in the circulating motion and the loss of vorticity in the wake. 

The question of the stability and evolution of a vortex in a stratified fluid is more 
complex. In this case, centrifugal forces are jointed by buoyancy, which suppresses motion 
in the vertical direction. Most experimental studies have investigated the vertical motion 
of vortex rings in a nonuniform fluid [4], modeling the motion of thermals in a stratified 
atmosphere [5, 6], vortex cores behind an airplane wing [7, 8], and structural elements of 
free turbulent flows [9]. The authors of [i0] visualized a laminar vortex ring moving along 
the interface of mixing fluids. The interaction of an obliquely-moving vortex ring with a 
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